ACE Calculus - Mr. Bo - Unit P HW Solutions
1a.

$$
\begin{array}{rlr}
& x^{3}+5 x^{2}-5 x-25 & \\
= & \left(x^{3}+5 x^{2}\right)-(5 x+25) & \Rightarrow \text { Group terms } \\
= & x^{2}(x+5)-5(x+5) & \Rightarrow \text { GCF from each term } \\
= & (x+5)\left(x^{2}-5\right) & \Rightarrow \text { Pull out GCF }
\end{array}
$$

1b.

$$
\begin{aligned}
& 4 x(x-4)^{-3}+16 x^{2}(x-4)^{-4} \\
= & 4 x(x-4)^{-4}[(x-4)+4 x] \Rightarrow \text { Pull out GCF } \\
= & \frac{4 x(5 x-4)}{(x-4)^{4}} \quad \Rightarrow \text { Simplify }
\end{aligned}
$$

3.

$$
\frac{\frac{3}{x}+\frac{4}{x+1}}{\frac{x}{4}}
$$

$=\frac{\frac{3}{x} \cdot 4 x(x+1)+\frac{4}{x+1} \cdot 4 x(x+1)}{\frac{x}{4} \cdot 4 x(x+1)} \Rightarrow$ Multiply through by LCD
$=\frac{12(x+1)+16 x}{x^{2}(x+1)} \quad \Rightarrow$ Simplify
$=\frac{28 x+12}{x^{2}(x+1)} \quad \Rightarrow$ Simplify
$=\frac{4(7 x+3)}{x^{2}(x+1)} \quad \Rightarrow$ Factor (optional)
5.

$$
\frac{5 x}{\sqrt{9+x}-3}
$$

$=\frac{5 x}{\sqrt{9+x}-3} \cdot \frac{\sqrt{9+x}+3}{\sqrt{9+x}+3} \quad \Rightarrow$ Multiply by conjugate
$=\frac{5 x(\sqrt{9+x}+3)}{(9+x)-9} \quad \Rightarrow$ Multiply
$=\frac{5 x(\sqrt{9+x}+3)}{x} \quad \Rightarrow$ Simplify
$=5(\sqrt{9+x+3}) \quad \Rightarrow$ Reduce
7.

9a.
$f(x)=3 x-1$

$$
\begin{aligned}
\frac{f(x)-f(1)}{x-1} & =\frac{(3 x-1)-2}{x-1} & & \Rightarrow \text { Substitute } \\
& =\frac{3 x-3}{x-1} & & \Rightarrow \text { Simplify } \\
& =\frac{3(x-1)}{x-1} & & \Rightarrow \text { Factor } \\
& =3 & & \Rightarrow \text { Reduce }
\end{aligned}
$$

$9 b$.

$$
2 \sin (3 x) \cos ^{2}(x)-\sin (3 x)
$$

$$
=\sin (3 x)\left[2 \cos ^{2}(x)-1\right] \quad \Rightarrow \text { Factor }
$$

$$
=\sin (3 x) \cos (2 x) \quad \Rightarrow \text { Replace }
$$

$$
\text { when } \mathrm{x}=\frac{\pi}{12} \text { : }
$$

$$
=\sin \left(3 \cdot \frac{\pi}{12}\right) \cos \left(2 \cdot \frac{\pi}{12}\right) \quad \Rightarrow \text { Substitute }
$$

$$
=\sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{6}\right) \quad \Rightarrow \text { Simplify }
$$

$$
=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \quad \Rightarrow \text { Evaluate }
$$

