Geometry R – Mr. Bo Unit 8 – Day 1 HW

| Name: |  |
|-------|--|
| Date: |  |

- 1. In parallelogram ABCD,  $m \angle A : m \angle B = 5 : 7$ . Find  $m \angle A$  and  $m \angle B$ .
- 2. The sides of a triangle are in the ratio 3:4:5. If the perimeter of the triangle is 48, find the lengths of the three sides.
- 3. The angles of a pentagon are in the ratio of 9:8:6:5:2. What is the measure of the largest angle?

4. Find the point F on  $\overline{DE}$  such that:



6. Solve for x in each proportion: a.  $\frac{2}{x-3} = \frac{x+2}{12}$ 

b. 
$$(x-4): x = 6: (x-3)$$

7. KL//EF. Use the "Triangle Side Splitter" Theorem to find the desired lengths in the picture.



d. KE = 12, GL = 15, GK = 10, GF = \_\_\_\_\_

8. Solve for x in each. (Diagrams are not to scale)



9. Complete the Proof by filling in the missing reasons.

Given:  $\overline{EG}$  median of Trapezoid ABCD.

Prove: F is midpoint of  $\overline{AC}$ 



| Statements                                   | Reasons                                                             |
|----------------------------------------------|---------------------------------------------------------------------|
| 1. $\overline{EG}$ median of Trapezoid ABCD. | 1.                                                                  |
| 2. E midpoint of $\overline{AB}$             | 2.                                                                  |
| 3. $AE = BE$                                 | 3.                                                                  |
| 4. $\overline{EG} / / \overline{BC}$         | 4.                                                                  |
| 5. $\frac{AE}{BE} = \frac{AF}{CF}$           | 5. (Hint: Think about how statement #4 relates to $\triangle ABC$ ) |
| 6. $(AE)(CF) = (BE)(AF)$                     | 6. (Hint: How we say "Cross Multiply" in geometry)                  |
| 7. $(BE)(CF) = (BE)(AF)$                     | 7. (Hint: Don't forget about statement #3)                          |
| 8. $CF = AF$                                 | 8. (Hint: Maybe use something from algebra)                         |
| 9. F midpoint of $\overline{AC}$             | 9.                                                                  |