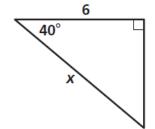

- 1. Complete the expression by filling in the missing angle measure. Verify your answers by using a calculator to find each ratio, rounding the values to 3 decimal places.
 - a. $\sin(55^{\circ}) = \cos($)
- b. $\cos(25^{\circ}) = \sin($
- c. $\sin(80^{\circ}) = \cos($)

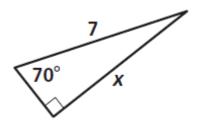
- 2. Write the ratios for sin(P) and cos(P) for each Δ .
- a.

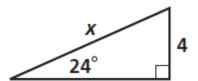
b

c.

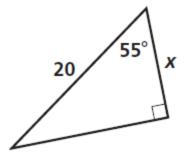


3. ΔDEF has right angle E. Draw and label the sides of ΔDEF using the given ratio. Determine the measure of angle $\angle D$ and find the length of the missing side in **simplest radical form**. (Hint: These triangles must be pretty "special" to be able to find the angle without a calculator.)

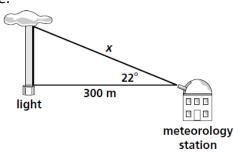

a.
$$\cos(D) = \frac{8}{16}$$

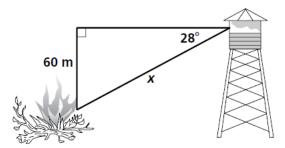

b.
$$\sin(F) = \frac{5\sqrt{3}}{10}$$

- 4. Find the length of the missing side of the triangle; round to the nearest tenth. Show how you arrived at your answer.
- a.

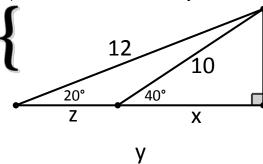


b.




d.

e.



f.

5. A ladder 6 feet long leans against a wall and makes an angle of 71º with the ground. Draw and label a picture to represent the situation and find to the nearest tenth of a foot how high up the wall the ladder will reach.

6. Solve for x, y, and z; round to the nearest tenth. Show how you arrived at your answers. (Hint: Use the small rt. Δ to find x and the large rt. Δ to find y)

