Chapter 3 Section 7 and Chapter 8 Section 5

Geologic Time

Section Question: How can scientists determine the order of past events throughout Earth's history?
\square
What Do You Think Now?

Focus Question A: How can 4.6 billion years of Earth's history be modeled?
Investigate: Earth's History
(Create a timeline of major event in Earth's history) Page 921

Geologic History: Major Events	
Date	Event
2011	Huge earthquake hits Japan.
2005	Gigantic tsunami develops in Asia.
1963	A new island erupts on a mid-ocean ridge near Iceland.
1904	Huge earthquake hits San Francisco.
1800	Atmospheric carbon dioxide rises.
10,000 years ago	Sea levels rise around Earth.
11,500 years ago	End of last glaciation in Europe.
2 Ma	Modern ice age begins and sea level falls.
5 Ma	A land bridge connecting North and South America forms.
7 Ma	Hominids (the human species) separate from chimpanzees.
11 Ma	The Grand Canyon is cut by the Colorado River.
16 Ma	The Rocky Mountains rise up.
35 Ma	A cold current develops around the Antarctic, causing global cooling.
55 Ma	Plate movements leave Antarctica stranded over the South Pole.
65 Ma	A giant meteorite strikes Earth.
140 Ma	Sea level rises and falls.
200 Ma	Pangea begins to break apart.
250 Ma	Ice age ends and deserts expand.
260 Ma	The climate becomes cooler and drier. Ice expands across Earth.
290 Ma	Pangea forms as Euramerica and Gondwanaland collide.
350 Ma	Euramerica and Gondwanaland move towards each other.
410 Mo	The collision of gigantic landmasses forms the Appalachian Mountains.
495 Ma	The supercontinent fragments.
540 Ma	Explosive development of life.
600 Ma	Shifts in climate force the entire Earth to glacial conditions.
1 Ga	A supercontinent called Rodinia contains nearly all of Earth's landmasses.
2 Ga	Ancient mountains form (but are now worn away).
3 Ga	Oldest sedimentary deposits are laid down on the shields.
4 Ga	The core, mantle, and crust differentiate.
4.6 Ga	Earth forms by accretion.

Ma stands for millions of years ago. Ga stands for billions of years ago.

Procedure:

1. Start with 25 meters of paper
2. Choose 10 events from the list and calculate the distance from the beginning of your paper roll to the time of the event.
3. If $50 \mathrm{~cm}=100$ million years, calculate the distance to each event.
a. Example: (for the first event)
$4,600,000,000-4,000,000,000=600,000,000$
50 cm X 600,000,000 /100,000,000 = 300cm
4. Place the first event on your paper roll 300 cm from the beginning.
5. Include a short description of the event and the dates of the event.

Observe: How are the events in Earth's past distributed?

Predict: Where would you put divisions in your timeline?

Investigate: ESRT pages 8 and 9

1. What are the three eras of the Phanerozoic Eon?
2. \qquad
3. \qquad
4. \qquad
5. During which Epoch did humans first appear? About how many years ago was this?
6. \qquad
7. \qquad
8. What are the three periods of the Mesozoic Era?
9. \qquad
10. \qquad
11. \qquad
12. During which three periods did dinosaurs live?
13. \qquad
14. \qquad
15. \qquad
16. What two important geologic events took place during the Triassic Period?
17. \qquad
18. \qquad
19. About how many years ago did the first insects appear?
20. \qquad
21. About how many years ago is the estimated origin of the Earth and Solar System?
22. \qquad
23. How old are the oldest known rocks? From which Eon are they thought to be from?
24. \qquad
25. \qquad
26. During which period was the Acadian Orogeny?
27. \qquad
28. How many years ago did the dinosaurs go extinct?
29. \qquad

Focus Question B: How do geologists determine the ages of rocks?
Investigate:

- Start with 32 pennies face up
- Turn over half the pennies every 30 seconds and record your data.

Time (min:sec)	Mineral	Atoms					
		Non-Decayed (heads up)			Decayed (tails up)		
		\#	Fraction	Mass (g)	\#	Fraction	Mass (g)
0:00	formation	32	$\frac{32}{32}$		0	$\frac{0}{32}$	0
0:30	half the atoms decay						
1:00	another half decay						
1:30	another half decay						
2:00	another half decay						
2:30	another half decay						

Observations:

						\square								

Describe your results:

Explain:

Focus Question C: How can basic geologic principles be used to interpret history?

Investigate: In the space below, draw 6 horizontal layers

If the 6 layers above were subjected to compressive forces, how would they change?

Erode the top portion of your 6 layers

Add an igneous intrusion that breaks through the surface to create a lava flow

Create a fault across your layers and intrusion

Explain:

Evaluate: Interpret the geologic history of the region shown in the picture below. (Use the ESRT to identify the rock types)

Geologic Time Scale

- Earth's total history encompasses a total time of 4.6 billion years
- Homo sapiens appeared on Earth 500,000 years ago
- Breaking down Earth's history into blocks of time allows scientists to easily organize Earth's history
- Unique events are used to distinguish the boundaries between the different blocks of time

Radioactive Decay

- Absolute age is a date given for a rock sample that is expressed in in years
- Radioactive decay is the process by which an atomic nucleus of an unstable atom loses particles
- Parent atom is the atom that undergoes radioactive decay
- Daughter atom is the product atom from radioactive decay of a parent atom
- Half-life is the length of time it takes for half of a radioactive substance to decay

Why is it useful to have different Radioactive isotopes?

Basic Geologic Principles

- Uplift is the process by which local areas of Earth's crust can be slowly raised
- Uplift is usually followed by erosion of material
- Subsidence is the process by which local areas of Earth's crust can be slowly lowered
- Subsidence is usually followed by deposition of material
- The principle of faunal succession can be used to correlate rocks that are found in different regions of the world
- If the rocks contain the same fossils then they are the same age
- Index fossils are used to narrow the age range of sedimentary rocks as much as possible.

Describe each of the Relative dating laws below

1. Law of Original horizontality
2. Law of Lateral Continuity
3. Law of Superposition
4. Law of Crosscutting Relationships
5. Law of Unconformities

6.

CHECKING UP: Page 929, 2 through 4
2.
3.
4.

