Lesson 9: Multiplying Polynomials

Classwork

Exercise 1

a. Gisella computed 342×23 as follows:

Can you explain what she is doing? What is her final answer?

Use a geometric diagram to compute the following products:
b. $\left(3 x^{2}+4 x+2\right)(2 x+3)$
c. $\left(2 x^{2}+10 x+1\right)\left(x^{2}+x+1\right)$
d. $\quad(x-1)\left(x^{3}+6 x^{2}-5\right)$

Exercise 2

Multiply the polynomials using the distributive property: $\left(3 x^{2}+x-1\right)\left(x^{4}-2 x+1\right)$.

Exercise 3

The expression $10 x^{2}+6 x^{3}$ is the result of applying the distributive property to the expression $2 x^{2}(5+3 x)$. It is also the result of applying the distributive property to $2\left(5 x^{2}+3 x^{3}\right)$ or to $x\left(10 x+6 x^{2}\right)$, for example, or even to $1 \cdot\left(10 x^{2}+6 x^{3}\right)$.

For (a) to (j) below, write down an expression such that if you applied the distributive property to your expression, it would give the result presented. Give interesting answers!
a. $6 a+14 a^{2}$
b. $2 x^{4}+2 x^{5}+2 x^{10}$
c. $6 z^{2}-15 z$
d. $42 w^{3}-14 w+77 w^{5}$
e. $\quad z^{2}(a+b)+z^{3}(a+b)$
f. $\frac{3}{2} s^{2}+\frac{1}{2}$
g. $\quad 15 p^{3} r^{4}-6 p^{2} r^{5}+9 p^{4} r^{2}+3 \sqrt{2} p^{3} r^{6}$
h. $0.4 x^{9}-40 x^{8}$
i. $(4 x+3)\left(x^{2}+x^{3}\right)-(2 x+2)\left(x^{2}+x^{3}\right)$
j. $(2 z+5)(z-2)-(13 z-26)(z-3)$

Exercise 4

Sammy wrote a polynomial using only one variable, x, of degree 3 . Myisha wrote a polynomial in the same variable of degree 5. What can you say about the degree of the product of Sammy's and Myisha's polynomials?

Extension

Find a polynomial that, when multiplied by $2 x^{2}+3 x+1$, gives the answer $2 x^{3}+x^{2}-2 x-1$.

Problem Set

1. Use the distributive property to write each of the following expressions as the sum of monomials.
a. $3 a(4+a)$
b. $\quad x(x+2)+1$
c. $\frac{1}{3}\left(12 z+18 z^{2}\right)$
d. $\quad 4 x\left(x^{3}-10\right)$
e. $(x-4)(x+5)$
f. $(2 z-1)\left(3 z^{2}+1\right)$
g. $(10 w-1)(10 w+1)$
h. $(-5 w-3) w^{2}$
i. $\quad 16 s^{100}\left(\frac{1}{2} s^{200}+0.125 s\right)$
j. $(2 q+1)\left(2 q^{2}+1\right)$
k. $\left(x^{2}-x+1\right)(x-1)$
I. $3 x z(9 x y+z)-2 y z(x+y-z)$
m. $(t-1)(t+1)\left(t^{2}+1\right)$
n. $(w+1)\left(w^{4}-w^{3}+w^{2}-w+1\right)$
o. $z(2 z+1)(3 z-2)$
p. $(x+y)(y+z)(z+x)$
q. $\frac{x+y}{3}$
r. $\left(20 f^{10}-10 f^{5}\right) \div 5$
s. $-5 y\left(y^{2}+y-2\right)-2\left(2-y^{3}\right)$
t. $\frac{(a+b-c)(a+b+c)}{17} \mathrm{sd}$
u. $(2 x \div 9+(5 x) \div 2) \div(-2)$
v. $\left(-2 f^{3}-2 f+1\right)\left(f^{2}-f+2\right)$
2. Use the distributive property (and your wits!) to write each of the following expressions as a sum of monomials. If the resulting polynomial is in one variable, write the polynomial in standard form.
a. $(a+b)^{2}$
b. $(a+1)^{2}$
c. $(3+b)^{2}$
d. $(3+1)^{2}$
e. $\quad(x+y+z)^{2}$
f. $\quad(x+1+z)^{2}$
g. $(3+z)^{2}$
h. $(p+q)^{3}$
i. $(p-1)^{3}$
j. $(5+q)^{3}$
3. Use the distributive property (and your wits!) to write each of the following expressions as a polynomial in standard form.
a. $\left(s^{2}+4\right)(s-1)$
b. $3\left(s^{2}+4\right)(s-1)$
c. $s\left(s^{2}+4\right)(s-1)$
d. $(s+1)\left(s^{2}+4\right)(s-1)$
e. $(u-1)\left(u^{5}+u^{4}+u^{3}+u^{2}+u+1\right)$
f. $\quad \sqrt{5}(u-1)\left(u^{5}+u^{4}+u^{3}+u^{2}+u+1\right)$
g. $\quad\left(u^{7}+u^{3}+1\right)(u-1)\left(u^{5}+u^{4}+u^{3}+u^{2}+u+1\right)$
4. Beatrice writes down every expression that appears in this problem set, one after the other, linking them with + signs between them. She is left with one very large expression on her page. Is that expression a polynomial expression? That is, is it algebraically equivalent to a polynomial?
What if she wrote - signs between the expressions instead?
What if she wrote \times signs between the expressions instead?
