Lesson 19: Rearranging Formulas

Classwork

Exercises 1-3

1. Solve each equation for x. For part (c), remember a variable symbol, like a, b, and c, represents a number.

a.
$$2x - 6 = 10$$

b.
$$-3x - 3 = -12$$

c.
$$ax - b = c$$

2. Compare your work in parts (a) through (c) above. Did you have to do anything differently to solve for x in part (c)?

3. Solve the equation ax - b = c for a. The variable symbols x, b, and c, represent numbers.

Lesson 19: Rearr

Rearranging Formulas

(cc) BY-NC-SA

AI GFBRA I

Example 1: Rearranging Familiar Formulas

The area A of a rectangle is 25 in^2 . The formula for area is A = lw.

• If the width w is 10 inches, what is the length l?

- If the width *w* is 15 inches, what is the length *l*?
- Rearrange the area formula to solve for *l*.

$$A = lw$$

$$\frac{A}{w} = \frac{lw}{w}$$

• Verify that the area formula, solved for l, will give the same results for l as having solved for l in the original area formula.

Exercises 4-5

- 4. Solve each problem two ways. First, substitute the given values, and solve for the given variable. Then, solve for the given variable, and substitute the given values.
 - a. The perimeter formula for a rectangle is p = 2(l + w), where p represents the perimeter, l represents the length, and w represents the width. Calculate l when p = 70 and w = 15.

b. The area formula for a triangle is $A = \frac{1}{2}bh$, where A represents the area, b represents the length of the base, and h represents the height. Calculate b when A = 100 and h = 20.

- 5. Rearrange each formula to solve for the specified variable. Assume no variable is equal to 0.
 - a. Given A = P(1 + rt),
 - i. Solve for P.

ii. Solve for *t*.

- b. Given $K = \frac{1}{2}mv^2$,
 - i. Solve for m.

ii. Solve for v.

(ce) BY-NC-SA

Example 2: Comparing Equations with One Variable to Those with More Than One Variable

Equation Containing More Than One Variable	Related Equation
Solve $ax + b = d - cx$ for x .	Solve $3x + 4 = 6 - 5x$ for <i>x</i> .
Solve for x.	Solve for <i>x</i> .
ax cx	2x - x
$\frac{ax}{b} + \frac{cx}{d} = e$	$\frac{2x}{5} + \frac{x}{7} = 3$

(CC) BY-NC-SA

Lesson Summary

The properties and reasoning used to solve equations apply regardless of how many variables appear in an equation or formula. Rearranging formulas to solve for a specific variable can be useful when solving applied problems.

Problem Set

For Problems 1–8, solve for x.

$$1. \quad ax + 3b = 2f$$

$$2. \quad rx + h = sx - k$$

1.
$$ax + 3b = 2f$$
 2. $rx + h = sx - k$ 3. $3px = 2q(r - 5x)$

4.
$$\frac{x+b}{4} = c$$

5.
$$\frac{x}{5} - 7 = 2q$$

5.
$$\frac{x}{5} - 7 = 2q$$
 6. $\frac{x}{6} - \frac{x}{7} = ab$

7.
$$\frac{x}{m} - \frac{x}{n} = \frac{1}{n}$$

7.
$$\frac{x}{m} - \frac{x}{n} = \frac{1}{p}$$
 8. $\frac{3ax + 2b}{c} = 4d$

9. Solve for
$$m$$
.

$$t = \frac{ms}{m+n}$$

10. Solve for
$$u$$
.

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$A=s^2$$

$$V = \pi r^2 h$$

13. Solve for
$$m$$
.

$$T = 4\sqrt{m}$$

14. Solve for
$$d$$
.

$$F = G \frac{mn}{d^2}$$

$$ax + by = c$$

(cc) BY-NC-SA

16. Solve for
$$b_1$$
.

$$A = \frac{1}{2}h(b_1 + b_2)$$

17. The science teacher wrote three equations on a board that relate velocity, v, distance traveled, d, and the time to travel the distance, t, on the board.

$$v = \frac{d}{t}$$

$$t = \frac{d}{v}$$

$$d = vt$$

Would you need to memorize all three equations, or could you just memorize one? Explain your reasoning.