Lesson 17: Four Interesting Transformations of Functions

Classwork

Exploratory Challenge 1

Let $f(x)=|x|, g(x)=f(x)-3$, and $h(x)=f(x)+2$ for any real number x.
a. Write an explicit formula for $g(x)$ in terms of $|x|$ (i.e., without using $f(x)$ notation).
b. Write an explicit formula for $h(x)$ in terms of $|x|$ (i.e., without using $f(x)$ notation).
c. Complete the table of values for these functions.

x	$f(x)=\|x\|$	$g(x)=f(x)-3$	$h(x)=f(x)+2$
-3			
-2			
-1			
0			
1			
2			

d. Graph all three equations: $y=f(x), y=f(x)-3$, and $y=f(x)+2$.

e. What is the relationship between the graph of $y=f(x)$ and the graph of $y=f(x)+k$?
f. How do the values of g and h relate to the values of f ?

Exploratory Challenge 2

Let $f(x)=|x|, g(x)=2 f(x)$, and $h(x)=\frac{1}{2} f(x)$ for any real number x.
a. Write a formula for $g(x)$ in terms of $|x|$ (i.e., without using $f(x)$ notation).
b. Write a formula for $h(x)$ in terms of $|x|$ (i.e., without using $f(x)$ notation).
c. Complete the table of values for these functions.

x	$f(x)=\|x\|$	$g(x)=2 f(x)$	$h(x)=\frac{1}{2} f(x)$
-3			
-2			
-1			
0			
2			
3			
2			

d. Graph all three equations: $y=f(x), y=2 f(x)$, and $y=\frac{1}{2} f(x)$.

Given $f(x)=|x|$, let $p(x)=-|x|, q(x)=-2 f(x)$, and $r(x)=-\frac{1}{2} f(x)$ for any real number x.
e. Write the formula for $q(x)$ in terms of $|x|$ (i.e., without using $f(x)$ notation).
f. Write the formula for $r(x)$ in terms of $|x|$ (i.e., without using $f(x)$ notation).
g. Complete the table of values for the functions $p(x)=-|x|, q(x)=-2 f(x)$, and $r(x)=-\frac{1}{2} f(x)$.

\boldsymbol{x}	$p(x)=-\|x\|$	$\boldsymbol{q}(\boldsymbol{x})=-\mathbf{2 f}(\boldsymbol{x})$	$r(x)=-\frac{1}{2} f(x)$
-3			
-2			
-1			
0			
1			
3			
2			

h. Graph all three functions on the same graph that was created in part (d). Label the graphs as $y=p(x)$, $y=q(x)$, and $y=r(x)$.
i. How is the graph of $y=f(x)$ related to the graph of $y=k f(x)$ when $k>1$?
j. How is the graph of $y=f(x)$ related to the graph of $y=k f(x)$ when $0<k<1$?
k. How do the values of functions p, q, and r relate to the values of functions f, g, and h, respectively? What transformation of the graphs of f, g, and h represents this relationship?

Exercise

Make up your own function f by drawing the graph of it on the Cartesian plane below. Label it as the graph of the equation $y=f(x)$. If $b(x)=f(x)-4$ and $c(x)=\frac{1}{4} f(x)$ for every real number x, graph the equations $y=b(x)$ and $y=c(x)$ on the same Cartesian plane.

Problem Set

Let $f(x)=|x|$ for every real number x. The graph of $y=f(x)$ is shown below. Describe how the graph for each function below is a transformation of the graph of $y=f(x)$. Then, use this same set of axes to graph each function for Problems 1-5. Be sure to label each function on your graph (by $y=a(x), y=b(x)$, etc.).

1. $a(x)=|x|+\frac{3}{2}$
2. $b(x)=-|x|$
3. $c(x)=2|x|$
4. $\quad d(x)=\frac{1}{3}|x|$
5. $e(x)=|x|-3$

6. Let $r(x)=|x|$ and $t(x)=-2|x|+1$ for every real number x. The graph of $y=r(x)$ is shown below. Complete the table below to generate output values for the function t, and then graph the equation $y=t(x)$ on the same set of axes as the graph of $y=r(x)$.

\boldsymbol{x}	$r(x)=\|x\|$	$t(x)=-2\|x\|+1$
-2		
-1		
0		
1		
2		

7. Let $f(x)=|x|$ for every real number x. Let m and n be functions found by transforming the graph of $y=f(x)$. Use the graphs of $y=f(x), y=m(x)$, and $y=n(x)$ below to write the functions m and n in terms of the function f. (Hint: What is the k ?)

