Lesson 19: Four Interesting Transformations of Functions

Classwork

Exploratory Challenge 1

Let $f(x)=x^{2}$ and $g(x)=f(2 x)$, where x can be any real number.
a. Write the formula for g in terms of x^{2} (i.e., without using $f(x)$ notation).
b. Complete the table of values for these functions.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$	$\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\mathbf{2 x})$
-3		
-2		
-1		
0		
1		
2		
3		

c. Graph both equations: $y=f(x)$ and $y=f(2 x)$.

d. How does the graph of $y=g(x)$ relate to the graph of $y=f(x)$?
e. How are the values of f related to the values of g ?

Exploratory Challenge 2

Let $f(x)=x^{2}$ and $h(x)=f\left(\frac{1}{2} x\right)$, where x can be any real number.
a. Rewrite the formula for h in terms of x^{2} (i.e., without using $f(x)$ notation).
b. Complete the table of values for these functions.

x	$f(x)=x^{2}$	$h(x)=f\left(\frac{1}{2} x\right)$
-3		
-2		
-1		
0		
1		
2		
3		

c. Graph both equations: $y=f(x)$ and $y=f\left(\frac{1}{2} x\right)$.

d. How does the graph of $y=f(x)$ relate to the graph of $y=h(x)$?
e. How are the values of f related to the values of h ?

Exercise

Complete the table of values for the given functions.
a.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=2^{\boldsymbol{x}}$	$\boldsymbol{g}(\boldsymbol{x})=\mathbf{2}^{(2 x)}$	$\boldsymbol{h}(\boldsymbol{x})=\mathbf{2}^{(-x)}$
-2			
-1			
0			
1			
2			

b. Label each of the graphs with the appropriate functions from the table.

c. Describe the transformation that takes the graph of $y=f(x)$ to the graph of $y=g(x)$.
d. Consider $y=f(x)$ and $y=h(x)$. What does negating the input do to the graph of f ?
e. Write the formula of an exponential function whose graph would be a horizontal stretch relative to the graph of g.

Exploratory Challenge 3

a. Look at the graph of $y=f(x)$ for the function $f(x)=x^{2}$ in Exploratory Challenge 1 again. Would we see a difference in the graph of $y=g(x)$ if -2 were used as the scale factor instead of 2 ? If so, describe the difference. If not, explain why not.
b. A reflection across the y-axis takes the graph of $y=f(x)$ for the function $f(x)=x^{2}$ back to itself. Such a transformation is called a reflection symmetry. What is the equation for the graph of the reflection symmetry of the graph of $y=f(x)$?
c. Deriving the answer to the following question is fairly sophisticated; do this only if you have time. In Lessons 17 and 18 , we used the function $f(x)=|x|$ to examine the graphical effects of transformations of a function. In this lesson, we use the function $f(x)=x^{2}$ to examine the graphical effects of transformations of a function. Based on the observations you made while graphing, why would using $f(x)=x^{2}$ be a better option than using the function $f(x)=|x|$?

Problem Set

Let $f(x)=x^{2}, g(x)=2 x^{2}$, and $h(x)=(2 x)^{2}$, where x can be any real number. The graphs above are of the functions $y=f(x), y=g(x)$, and $y=h(x)$.

1. Label each graph with the appropriate equation.
2. Describe the transformation that takes the graph of $y=f(x)$ to the graph of $y=g(x)$. Use coordinates to illustrate an example of the correspondence.
3. Describe the transformation that takes the graph of $y=f(x)$ to the graph of $y=h(x)$. Use coordinates to illustrate an example of the correspondence.
