

Lesson 19: Four Interesting Transformations of Functions

Classwork

Exploratory Challenge 1

Let $f(x) = x^2$ and g(x) = f(2x), where x can be any real number.

- a. Write the formula for g in terms of x^2 (i.e., without using f(x) notation).
 - x
 $f(x) = x^2$ g(x) = f(2x)

 -3
 -3

 -2
 -1

 0
 -1

 1
 -1

 2
 -1

 3
 -1
- b. Complete the table of values for these functions.

c. Graph both equations: y = f(x) and y = f(2x).

Lesson 19:

Four Interesting Transformations of Functions

- d. How does the graph of y = g(x) relate to the graph of y = f(x)?
- e. How are the values of f related to the values of g?

Exploratory Challenge 2

Let $f(x) = x^2$ and $h(x) = f\left(\frac{1}{2}x\right)$, where x can be any real number.

- a. Rewrite the formula for *h* in terms of x^2 (i.e., without using f(x) notation).
- b. Complete the table of values for these functions.

x	$f(x) = x^2$	$h(x) = f\left(\frac{1}{2}x\right)$
-3		
-2		
-1		
0		
1		
2		
3		

Four Interesting Transformations of Functions

c. Graph both equations: y = f(x) and $y = f\left(\frac{1}{2}x\right)$.

- d. How does the graph of y = f(x) relate to the graph of y = h(x)?
- e. How are the values of *f* related to the values of *h*?

Exercise

Complete the table of values for the given functions.

a.

x	$f(x)=2^x$	$g(x) = 2^{(2x)}$	$h(x) = 2^{(-x)}$
-2			
-1			
0			
1			
2			

Four Interesting Transformations of Functions

b. Label each of the graphs with the appropriate functions from the table.

- c. Describe the transformation that takes the graph of y = f(x) to the graph of y = g(x).
- d. Consider y = f(x) and y = h(x). What does negating the input do to the graph of f?
- e. Write the formula of an exponential function whose graph would be a horizontal stretch relative to the graph of g.

9: Four Interesting Transformations of Functions

Exploratory Challenge 3

a. Look at the graph of y = f(x) for the function $f(x) = x^2$ in Exploratory Challenge 1 again. Would we see a difference in the graph of y = g(x) if -2 were used as the scale factor instead of 2? If so, describe the difference. If not, explain why not.

b. A reflection across the y-axis takes the graph of y = f(x) for the function $f(x) = x^2$ back to itself. Such a transformation is called a *reflection symmetry*. What is the equation for the graph of the reflection symmetry of the graph of y = f(x)?

c. Deriving the answer to the following question is fairly sophisticated; do this only if you have time. In Lessons 17 and 18, we used the function f(x) = |x| to examine the graphical effects of transformations of a function. In this lesson, we use the function $f(x) = x^2$ to examine the graphical effects of transformations of a function. Based on the observations you made while graphing, why would using $f(x) = x^2$ be a better option than using the function f(x) = |x|?

-1

Lesson 19:

-2

engage^{ny}

2

Problem Set

1.

EUREKA

0

