Lesson 20: Four Interesting Transformations of Functions

Classwork

Opening Exercise

Fill in the blanks of the table with the appropriate heading or descriptive information.

Graph of $y=f(x)$		Vertic			Horizontal	
Translate	$y=f(x)+k$	$k>0$	Translate up by $\|k\|$ units		$k>0$	Translate right by $\|k\|$ units
			Translate down by $\|k\|$ units		$k<0$	
Scale by scale factor k		$k>1$		$y=f\left(\frac{1}{k} x\right)$		Horizontal stretch by a factor of $\|k\|$
		$0<k<1$	Vertical shrink by a factor of $\|k\|$		$0<k<1$	
			Vertical shrink by a factor of $\|k\|$ and reflection over x axis		$-1<k<0$	Horizontal shrink by a factor of $\|k\|$ and reflection across y-axis
		$k<-1$			$k<-1$	Horizontal stretch by a factor of $\|k\|$ and reflection over y-axis

Exploratory Challenge 1

A transformation of the absolute value function $f(x)=|x-3|$ is rewritten here as a piecewise function. Describe in words how to graph this piecewise function.

$$
f(x)=\left\{\begin{array}{cc}
-x+3, & x<3 \\
x-3, & x \geq 3
\end{array}\right.
$$

Exercises 1-2

1. Describe how to graph the following piecewise function. Then, graph $y=f(x)$ below.

$$
f(x)=\left\{\begin{array}{rr}
-3 x-3, & x \leq-2 \\
0.5 x+4, & -2<x<2 \\
-2 x+9, & x \geq 2
\end{array}\right.
$$

2. Using the graph of f below, write a formula for f as a piecewise function.

Exploratory Challenge 2

The graph $y=f(x)$ of a piecewise function f is shown. The domain of f is $-5 \leq x \leq 5$, and the range is $-1 \leq y \leq 3$.
a. Mark and identify four strategic points helpful in sketching the graph of $y=f(x)$.

b. Sketch the graph of $y=2 f(x)$, and state the domain and range of the transformed function. How can you use part (a) to help sketch the graph of $y=2 f(x)$?

c. A horizontal scaling with scale factor $\frac{1}{2}$ of the graph of $y=f(x)$ is the graph of $y=f(2 x)$. Sketch the graph of $y=f(2 x)$, and state the domain and range. How can you use the points identified in part (a) to help sketch $y=f(2 x)$?

Exercises 3-4

3. How does the range of f in Exploratory Challenge 2 compare to the range of a transformed function g, where $g(x)=k f(x)$, when $k>1$?
4. How does the domain of f in Exploratory Challenge 2 compare to the domain of a transformed function g, where $g(x)=f\left(\frac{1}{k} x\right)$, when $0<k<1$? (Hint: How does a graph shrink when it is horizontally scaled by a factor k ?)

Problem Set

1. Suppose the graph of f is given. Write an equation for each of the following graphs after the graph of f has been transformed as described. Note that the transformations are not cumulative.
a. Translate 5 units upward.
b. Translate 3 units downward.
c. Translate 2 units right.
d. Translate 4 units left.
e. Reflect about the x-axis.
f. Reflect about the y-axis.
g. Stretch vertically by a factor of 2 .
h. Shrink vertically by a factor of $\frac{1}{3}$.
i. Shrink horizontally by a factor of $\frac{1}{3}$.
j. Stretch horizontally by a factor of 2 .
2. Explain how the graphs of the equations below are related to the graph of $y=f(x)$.
a. $y=5 f(x)$
b. $\quad y=f(x-4)$
c. $\quad y=-2 f(x)$
d. $\quad y=f(3 x)$
e. $y=2 f(x)-5$
3. The graph of the equation $y=f(x)$ is provided below. For each of the following transformations of the graph, write a formula (in terms of f) for the function that is represented by the transformation of the graph of $y=f(x)$. Then, draw the transformed graph of the function on the same set of axes as the graph of $y=f(x)$.

a. A translation 3 units left and 2 units up
b. A vertical stretch by a scale factor of 3
c. A horizontal shrink by a scale factor of $\frac{1}{2}$
4. Reexamine your work on Exploratory Challenge 2 and Exercises 3 and 4 from this lesson. Parts (b) and (c) of Exploratory Challenge 2 asked how the equations $y=2 f(x)$ and $y=f(2 x)$ could be graphed with the help of the strategic points found in part (a). In this problem, we investigate whether it is possible to determine the graphs of $y=2 f(x)$ and $y=f(2 x)$ by working with the piecewise linear function f directly.
a. Write the function f in Exploratory Challenge 2 as a piecewise linear function.
b. Let $g(x)=2 f(x)$. Use the graph you sketched in Exploratory Challenge 2, part (b) of $y=2 f(x)$ to write the formula for the function g as a piecewise linear function.
c. Let $h(x)=f(2 x)$. Use the graph you sketched in Exploratory Challenge 2, part (c) of $y=f(2 x)$ to write the formula for the function h as a piecewise linear function.
d. Compare the piecewise linear functions g and h to the piecewise linear function f. Did the expressions defining each piece change? If so, how? Did the domains of each piece change? If so how?
